Atn 10 spheric Correction of Lal 1 dsat ETM + Land Surface Imagery : II . Validation and Applications
نویسندگان
چکیده
-This is the second paper of the series on atmospheric correction of ETM+ land surface imagery. In the first paper, a new algorithm that corrects heterogeneous aerosol scattering and surface adjacency effects was presented. In this study, our objectives are to 1) evaluate the accuracy of this new atmospheric correction algorithm using ground radiometric measurements; 2) apply this algorithm to correct MODIS and SeaWiFS imagery; and 3) demonstrate how much atmospheric correction of ETM+ imagery can improve land cover classification, change detection, and broadband albedo calculations. Validation results indicate that this new algorithm can retrieve surface reflectance from ETM+ imagery accurately. All experimental cases demonstrate that this algorithm can be used for correcting both MODIS and SeaWiFS imagery. Although more tests and validation exercises are needed, it has been proven promising to correct different multispectral imagery operationally. We have also demonstrated that atmospheric correction does matter.
منابع مشابه
Atmospheric correction of Landsat ETM+ land surface imagery. II. Validation and applications
-This is the second paper of the series on atmospheric correction of ETM+ land surface imagery. In the first paper, a new algorithm that corrects heterogeneous aerosol scattering and surface adjacency effects was presented. In this study, our objectives are to 1) evaluate the accuracy of this new atmospheric correction algorithm using ground radiometric measurements; 2) apply this algorithm to ...
متن کاملAtmospheric Correction of Landsat ETM+ Land Surface Imagery—Part I: Methods
To extract quantitative information from the Enhanced Thematic Mapper-Plus (ETM+) imagery accurately, atmospheric correction is a necessary step. After reviewing historical development of atmospheric correction of Landsat thematic mapper (TM) imagery, we present a new algorithm that can effectively estimate the spatial distribution of atmospheric aerosols and retrieve surface reflectance from E...
متن کاملLULC Classification and Topographic Correction of Landsat-7 ETM+ Imagery in the Yangjia River Watershed: the Influence of DEM Resolution
DEM-based topographic corrections on Landsat-7 ETM+ imagery from rugged terrain, as an effective processing techniques to improve the accuracy of Land Use/Land Cover (LULC) classification as well as land surface parameter retrievals with remotely sensed data, has been frequently reported in the literature. However, few studies have investigated the exact effects of DEM with different resolution...
متن کاملEstimation and validation of land surface broadband albedos and leaf area index from EO-1 ALI data
The Advanced Land Imager (ALI) is a multispectral sensor onboard the National Aeronautics and Space Administration Earth Observing 1 (EO-1) satellite. It has similar spatial resolution to Landsat-7 Enhanced Thematic Mapper Plus (ETM+), with three additional spectral bands. We developed new algorithms for estimating both land surface broadband albedo and leaf area index (LAI) from ALI data. A re...
متن کاملAn Operational Scheme for Deriving Standardised Surface Reflectance from Landsat TM/ETM+ and SPOT HRG Imagery for Eastern Australia
Operational monitoring of vegetation and land surface change over large areas can make good use of satellite sensors that measure radiance reflected from the Earth’s surface. Monitoring programs use multiple images for complete spatial coverage over time. Accurate retrievals of vegetation cover and vegetation change estimates can be hampered by variation, in both space and time, in the measured...
متن کامل